Pre-Calculus 120 A Section 2.2 # Square Root of a Function ## Graphing y = f(x) and $y = \sqrt{f(x)}$ • To graph $y = \sqrt{f(x)}$, you can set up a table of values for the graph of y = f(x). Then, take the square root of the elements in the range, while keeping the elements in the domain the same. The mapping of this transformation would be $(x,y) \to (x,\sqrt{y})$. • When graphing $y = \sqrt{f(x)}$, pay attention to the invariant points, which are points that are the same for y = f(x) as they are for $y = \sqrt{f(x)}$. The invariant points are (x, 0) and (x, 1) because when f(x) = 0, $\sqrt{f(x)} = 0$, and when f(x) = 1, $\sqrt{f(x)} = 1$ ## Domain and Range of $y = \sqrt{f(x)}$ - The domain of $y = \sqrt{f(x)}$ is any value of x for which $f(x) \ge 0$ (since you cannot take the square root of a negative number). - The range is the square root of any value in y = f(x) for which $y = \sqrt{f(x)}$ is defined. ## The Graph of $y = \sqrt{f(x)}$ | Value of f(x) | f(x) < 0 | f(x) = 0 | 0 < f(x) < 1 | f(x) = 1 | f(x) > 1 | |-------------------|----------------------|---------------------|----------------------|-------------------|----------------------| | Location of | The graph of | The graphs of | The graph | The graphs of | The graph | | $y = \sqrt{f(x)}$ | $y = \sqrt{f(x)}$ is | $y = \sqrt{f(x)}$ | of $y = \sqrt{f(x)}$ | $y = \sqrt{f(x)}$ | of $y = \sqrt{f(x)}$ | | relative to | undefined. | and $y = f(x)$ | is <i>above</i> the | and $y = f(x)$ | is <i>below</i> the | | y = f(x) | | <i>intersect</i> on | graph of | intersect. | graph of | | | | the x-axis. | y = f(x). | | y = f(x). | # Example 1: Compare Graphs of a Linear Function and the Square Root of the Function Consider the graphs of f(x) = 2x + 1 and $f(x) = \sqrt{2x + 1}$ shown to the right. Note that the graph of $f(x) = \sqrt{2x + 1}$ is undefined for ______. The graphs of f(x) = 2x + 1 and $f(x) = \sqrt{2x + 1}$ intersect at _____ and at _____. The graph of $f(x) = \sqrt{2x + 1}$ is above the graph of f(x) = 2x + 1 for ______, and below the graph of f(x) = 2x + 1 for _____. (Why?) ## Example 2: Compare Graphs of a Linear Function and the Square Root of the Function - a. Given f(x) = 4x 3, graph the functions y = f(x) and $y = \sqrt{f(x)}$. - b. Compare the graphs. #### Solution: | a. | x | f(x) = 4x - 3 | $f(x) = \sqrt{4x - 3}$ | |----|------|---------------|------------------------| | | 0 | | | | | 0.75 | | | | | 0.77 | | | | | 0.8 | | | | | 1 | | | | | 2 | | | | | 3 | | | | | 4 | | | #### b. Comparison: The graphs of f(x) = 4x - 3 and $f(x) = \sqrt{4x - 3}$ intersect at _____ and at ____. These are referred to as _____ points. The x-intercept of the graph of f(x) = 4x - 3 is also the x-intercept and the _____ point of the graph of the $f(x) = \sqrt{4x - 3}$. The graph of $f(x) = \sqrt{4x-3}$ is above the graph of f(x) = 4x-3 for ______. The graph of $f(x) = \sqrt{4x-3}$ is below the graph of f(x) = 4x-3 for _____. Domain of f(x) = 4x - 3: Range of f(x) = 4x - 3: Domain of $f(x) = \sqrt{4x - 3}$: Range of $f(x) = \sqrt{4x - 3}$: # Example 3: Graph the Square Root of a Function from the Graph of the Function and Explore the Domains and Ranges For each of the following functions, y = f(x), sketch the graph of $y = \sqrt{f(x)}$. Determine the domain and range of y = f(x) and $y = \sqrt{f(x)}$. a. $$y = -x - 2$$ and $y = \sqrt{-x - 2}$ b. $$y = x^2 - 6x + 13$$ and $y = \sqrt{x^2 - 6x + 13}$ c. $$y = (x+3)^2 - 4$$ and $y = \sqrt{(x+3)^2 - 4}$ d. $$y = 9 - x^2$$ and $y = \sqrt{9 - x^2}$ e. $$v = -x^2 - 1$$ and $v = \sqrt{-x^2 - 1}$ #### Solution: On the same grid as the graph of y = f(x): - Plot the invariant points. - Draw a smooth curve between the invariant points, and above the graph of y = f(x). - Plot a few other points. If possible, choose values of f(x) which have simple square roots. a. $$y = -x - 2$$ and $y = \sqrt{-x - 2}$ $$y = -x - 2$$: Domain: Range: $$y=\sqrt{-x-2}$$: Domain: _____ Range: b. $$y = x^2 - 6x + 13$$ and $y = \sqrt{x^2 - 6x + 13}$ $$y = x^2 - 6x + 13$$: Domain: Range: $$y = \sqrt{x^2 - 6x + 13}$$: Domain: Range: _____ c. $$y = (x+3)^2 - 4$$ and $y = \sqrt{(x+3)^2 - 4}$ $$y = (x+3)^2 - 4$$: Domain: Range: _____ $$y = \sqrt{(x+3)^2 - 4}$$: Domain: Range: d. $$y = 9 - x^2$$ and $y = \sqrt{9 - x^2}$ $$y = 9 - x^2$$: Domain: Range: $$y=\sqrt{9-x^2}:$$ Domain: _____ Range: e. $$y = -x^2 - 1$$ and $y = \sqrt{-x^2 - 1}$ $$y = -x^2 - 1$$: Domain: Range: $$y = \sqrt{-x^2 - 1}$$: Domain : _____ Range : # Example 4: Determine Domains and Ranges of y = f(x) and $y = \sqrt{f(x)}$ For the functions in each pair: - i) Determine the coordinates of the invariant points. - ii) Sketch the graph of y = f(x) using key points (invariant points, vertex, etc.) and use this graph to help you sketch the graph of $y = \sqrt{f(x)}$. - iii) Determine the domains and ranges of the functions. a. $$y = 4x - 2$$, $y = \sqrt{4x - 2}$ a. $$y = 4x - 2$$, $y = \sqrt{4x - 2}$ b. $y = 12 - 3x^2$, $y = \sqrt{12 - 3x^2}$ c. $y = 0.5x^2 - 5$, $y = \sqrt{0.5x^2 - 5}$ c. $$y = 0.5x^2 - 5$$, $y = \sqrt{0.5x^2 - 5}$ Solution: a. $$y = 4x - 2$$ and $y = \sqrt{4x - 2}$ i) Invariant points: ii) Sketches: iii) Domains and Ranges: Domain of y = 4x - 2: _____ Range of y = 4x - 2: _____ Domain of $y = \sqrt{4x - 2}$: ______ Range of $y = \sqrt{4x - 2}$: _____ - b. $y = 12 3x^2$ and $y = \sqrt{12 3x^2}$ - i) Invariant points: ii) Sketches: - iii) Domain of $y = 12 3x^2$: Range of $y = 12 3x^2$: Domain of $y = \sqrt{12 3x^2}$: Range of $y = \sqrt{12 3x^2}$: - c. $y = 0.5x^2 5$ and $y = \sqrt{0.5x^2 5}$ - i) Invariant points: ii) Sketches: iii) Domain of $y = 0.5x^2 - 5$: ______ Range of $y = 0.5x^2 - 5$: ______ Range of $y = \sqrt{0.5x^2 - 5}$: ______