Pre-Calculus 120 A Section 2.2

Square Root of a Function

Graphing y = f(x) and $y = \sqrt{f(x)}$

• To graph $y = \sqrt{f(x)}$, you can set up a table of values for the graph of y = f(x). Then, take the square root of the elements in the range, while keeping the elements in the domain the same. The mapping of this transformation would be $(x,y) \to (x,\sqrt{y})$.

• When graphing $y = \sqrt{f(x)}$, pay attention to the invariant points, which are points that are the same for y = f(x) as they are for $y = \sqrt{f(x)}$. The invariant points are (x, 0) and (x, 1) because when f(x) = 0, $\sqrt{f(x)} = 0$, and when f(x) = 1, $\sqrt{f(x)} = 1$

Domain and Range of $y = \sqrt{f(x)}$

- The domain of $y = \sqrt{f(x)}$ is any value of x for which $f(x) \ge 0$ (since you cannot take the square root of a negative number).
- The range is the square root of any value in y = f(x) for which $y = \sqrt{f(x)}$ is defined.

The Graph of $y = \sqrt{f(x)}$

Value of f(x)	f(x) < 0	f(x) = 0	0 < f(x) < 1	f(x) = 1	f(x) > 1
Location of	The graph of	The graphs of	The graph	The graphs of	The graph
$y = \sqrt{f(x)}$	$y = \sqrt{f(x)}$ is	$y = \sqrt{f(x)}$	of $y = \sqrt{f(x)}$	$y = \sqrt{f(x)}$	of $y = \sqrt{f(x)}$
relative to	undefined.	and $y = f(x)$	is <i>above</i> the	and $y = f(x)$	is <i>below</i> the
y = f(x)		<i>intersect</i> on	graph of	intersect.	graph of
		the x-axis.	y = f(x).		y = f(x).

Example 1: Compare Graphs of a Linear Function and the Square Root of the Function

Consider the graphs of f(x) = 2x + 1 and $f(x) = \sqrt{2x + 1}$ shown to the right. Note that the graph of $f(x) = \sqrt{2x + 1}$ is undefined for ______. The graphs of f(x) = 2x + 1 and $f(x) = \sqrt{2x + 1}$ intersect at _____ and at _____. The graph of $f(x) = \sqrt{2x + 1}$ is above the graph of f(x) = 2x + 1 for ______, and below the graph of f(x) = 2x + 1 for _____. (Why?)

Example 2: Compare Graphs of a Linear Function and the Square Root of the Function

- a. Given f(x) = 4x 3, graph the functions y = f(x) and $y = \sqrt{f(x)}$.
- b. Compare the graphs.

Solution:

a.	x	f(x) = 4x - 3	$f(x) = \sqrt{4x - 3}$
	0		
	0.75		
	0.77		
	0.8		
	1		
	2		
	3		
	4		

b. Comparison:

The graphs of f(x) = 4x - 3 and $f(x) = \sqrt{4x - 3}$ intersect at _____ and at ____. These are referred to as _____ points.

The x-intercept of the graph of f(x) = 4x - 3 is also the x-intercept and the _____ point of the graph of the $f(x) = \sqrt{4x - 3}$.

The graph of $f(x) = \sqrt{4x-3}$ is above the graph of f(x) = 4x-3 for ______.

The graph of $f(x) = \sqrt{4x-3}$ is below the graph of f(x) = 4x-3 for _____.

Domain of f(x) = 4x - 3:

Range of f(x) = 4x - 3:

Domain of $f(x) = \sqrt{4x - 3}$:

Range of $f(x) = \sqrt{4x - 3}$:

Example 3: Graph the Square Root of a Function from the Graph of the Function and Explore the Domains and Ranges

For each of the following functions, y = f(x), sketch the graph of $y = \sqrt{f(x)}$. Determine the domain and range of y = f(x) and $y = \sqrt{f(x)}$.

a.
$$y = -x - 2$$
 and $y = \sqrt{-x - 2}$

b.
$$y = x^2 - 6x + 13$$
 and $y = \sqrt{x^2 - 6x + 13}$

c.
$$y = (x+3)^2 - 4$$
 and $y = \sqrt{(x+3)^2 - 4}$

d.
$$y = 9 - x^2$$
 and $y = \sqrt{9 - x^2}$

e.
$$v = -x^2 - 1$$
 and $v = \sqrt{-x^2 - 1}$

Solution:

On the same grid as the graph of y = f(x):

- Plot the invariant points.
- Draw a smooth curve between the invariant points, and above the graph of y = f(x).
- Plot a few other points. If possible, choose values of f(x) which have simple square roots.

a.
$$y = -x - 2$$
 and $y = \sqrt{-x - 2}$

$$y = -x - 2$$
:

Domain:

Range:

$$y=\sqrt{-x-2}$$
:

Domain: _____

Range:

b.
$$y = x^2 - 6x + 13$$
 and $y = \sqrt{x^2 - 6x + 13}$

$$y = x^2 - 6x + 13$$
:

Domain:

Range:

$$y = \sqrt{x^2 - 6x + 13}$$
:

Domain:

Range: _____

c.
$$y = (x+3)^2 - 4$$
 and $y = \sqrt{(x+3)^2 - 4}$

$$y = (x+3)^2 - 4$$
:

Domain:

Range: _____

$$y = \sqrt{(x+3)^2 - 4}$$
:

Domain:

Range:

d.
$$y = 9 - x^2$$
 and $y = \sqrt{9 - x^2}$

$$y = 9 - x^2$$
:

Domain:

Range:

$$y=\sqrt{9-x^2}:$$

Domain: _____

Range:

e.
$$y = -x^2 - 1$$
 and $y = \sqrt{-x^2 - 1}$

$$y = -x^2 - 1$$
:

Domain:

Range:

$$y = \sqrt{-x^2 - 1}$$
:

Domain : _____

Range :

Example 4: Determine Domains and Ranges of y = f(x) and $y = \sqrt{f(x)}$

For the functions in each pair:

- i) Determine the coordinates of the invariant points.
- ii) Sketch the graph of y = f(x) using key points (invariant points, vertex, etc.) and use this graph to help you sketch the graph of $y = \sqrt{f(x)}$.
- iii) Determine the domains and ranges of the functions.

a.
$$y = 4x - 2$$
, $y = \sqrt{4x - 2}$

a.
$$y = 4x - 2$$
, $y = \sqrt{4x - 2}$ b. $y = 12 - 3x^2$, $y = \sqrt{12 - 3x^2}$ c. $y = 0.5x^2 - 5$, $y = \sqrt{0.5x^2 - 5}$

c.
$$y = 0.5x^2 - 5$$
, $y = \sqrt{0.5x^2 - 5}$

Solution:

a.
$$y = 4x - 2$$
 and $y = \sqrt{4x - 2}$

i) Invariant points:

ii) Sketches:

iii) Domains and Ranges:

Domain of y = 4x - 2: _____ Range of y = 4x - 2: _____

Domain of $y = \sqrt{4x - 2}$: ______ Range of $y = \sqrt{4x - 2}$: _____

- b. $y = 12 3x^2$ and $y = \sqrt{12 3x^2}$
- i) Invariant points:

ii) Sketches:

- iii) Domain of $y = 12 3x^2$:

 Range of $y = 12 3x^2$:

 Domain of $y = \sqrt{12 3x^2}$:

 Range of $y = \sqrt{12 3x^2}$:
- c. $y = 0.5x^2 5$ and $y = \sqrt{0.5x^2 5}$
- i) Invariant points:

ii) Sketches:

iii) Domain of $y = 0.5x^2 - 5$: ______ Range of $y = 0.5x^2 - 5$: ______ Range of $y = \sqrt{0.5x^2 - 5}$: ______